Disaggregation Reaction of [2]Pseudorotaxanes Composed of Dibenzo[24]crown-8 and Dialkylammonium Having Isopropyl End Groups

Yuji Suzaki, Atsuko Takagi, and Kohtaro Osakada*

Chemical Resources Laboratory R1-3, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503

(Received February 15, 2010; CL-100159; E-mail: kosakada@res.titech.ac.jp)

[2]Pseudorotaxanes composed of dibenzo[24]crown-8 (DB24C8) and dialkylammonium having isopropyl end groups are converted into the component molecules in C_6D_6 solution containing PF_6^- anion.

Rotaxanes are defined as supramolecules composed of interlocked macrocyclic molecules and axle molecules with two bulky end groups.^{1,2} Pseudorotaxanes with less bulky end groups of the axle component undergo disaggregation to the component molecules rapidly because the end groups are smaller than the cavity of the macrocycle.³⁻⁵ The reaction is intrinsically reversible, and relative stability of the pseudorotaxanes and the component molecules governs the ratio of the components in the equilibrated mixture (Scheme 1(i)). Disaggregation of pseudorotaxanes having more bulky end groups of the axle component proceeds more slowly $(t_{1/2} = 4-143 \text{ h})^{6a}$ (Scheme 1(ii)).⁶⁻⁹ Stoddart named these pseudorotaxanes rotaxane-like complex,^{7,8} and disaggregation has been applied to a drug delivery system.¹⁰ Raising temperature, use of polar solvents, and change of pH have been reported to enhance the disaggregation of the rotaxane-like complexes. $8-11$ Elimination of BMP25C8 $(BMP25C8 = benzometaphenylene[25]crown-8)$ with a larger cavity than common macrocyclic components from the rotaxane-like complex $[(t-BuC₆H₄-4-CH₂NH₂CH₂C₆H₄-4 CH_2PPh_3)(BMP25C8)[PF_6]$ ₂ proceeds smoothly in polar solvent or by additional base.⁸ The rotaxane-like complex of a macrocyclic octaoxa[22]ferrocenophane with dialkylammonium $[AnCH₂NH₂CH₂C₆H₄-4-OCH₂CH₂CH=CHCOOC₆H₃-3,5 Me_2$]BARF (An = 9-anthryl, BARF = B{C₆H₃-3,5-(CF₃)₂}₄) undergoes disaggregation in CD_3CN and $DMSO-d_6$, while similar reaction was not observed in less polar $CDCl₃$.⁹ In this paper, we report synthesis of cationic rotaxane-like complexes, composed of dibenzo[24]crown-8 (DB24C8) and dialkylammonium with isopropyl groups, and its disaggregation enhanced by PF_6^- anion.

Scheme 2 shows preparation of [2]pseudorotaxane, which is employed as precursors of rotaxane-like complexes. Dissolution of DB24C8 and $\text{NH}_2(\text{CH}_2\text{C}_6\text{H}_4\text{-}4\text{-OCH}_2\text{CH}_2\text{CH}\text{=}CH_2)$ ₂]BARF ($[1] BARF$) in CD₃CN at 25 °C (10 mM for each compound)

Scheme 1. Dethreading reactions of [2]pseudorotaxane.

Scheme 2. Formation of [2]pseudorotaxane [1(DB24C8)]X $(X = BARF$ and PF_6) in CD₃CN.

Scheme 3. Synthesis of $[2(\text{DB}24\text{C}8)]X (X = \text{BARF}$ and PF_6).

gave an equilibrated mixture with [2]pseudorotaxane [1(DB24C8)]BARF within 10 min. ¹HNMR spectroscopy of the mixture shows a signal at δ 4.58 assigned to NCH₂ hydrogen of [1(DB24C8)]BARF where the molar ratio between [1(DB24C8)]BARF and [1]BARF was 26/74. A similar reaction of DB24C8 with $[1]PF_6$ yielded the mixture with $[1(DB24C8)]PF_6$ ([[1(DB24C8)]PF₆]/[[1]PF₆] = 7/93). These results indicate that formation of the [2]pseudorotaxane from [1]BARF with DB24C8 is more favorable than that of $[1]PF₆.¹²$

Scheme 3 depicts synthesis of the rotaxane-like complexes. Cross-metathesis reaction of [1]BARF with $CH₂=CHCOOi-Pr$ catalyzed by $(H_2Mes)(PCy_3)Cl_2RuCHPh$ $(H_2Mes = N,N-bis-$ (mesityl)-4,5-dihydroimidazol-2-ylidene) for $13 h$,¹³ in the presence of DB24C8 yielded $[NH_2(CH_2C_6H_4-4-OCH_2CH_2CH=CHCOOi-Pr)_2(DB24C8)]BARF$ ([2(DB24C8)]BARF) in CHCOOi-Pr)2(DB24C8)]BARF ([2(DB24C8)]BARF) in 50% isolated yield.5,14¹⁶ The ESI-MS spectrum of $[2(DB24C8)]BARF$ showed a peak at m/z 958 assigned to the cationic rotaxane-like complex, $[2(\text{DB}24\text{C}8)]^{+.17}$ ¹H NMR spectrum of $[2(DB24C8)]BARF$ in CDCl₃ contains signals at δ

Figure 1. Profile of disaggregation of $[1(DB24C8)]X$ $([[1(DB24C8)]X]_0 = 5.0$ mM) in $\widetilde{C_6D_6}$. (a) $X = BARF$ at 50 °C. (b) $X = BARF$ with added $[NH_2(CH_2Ph)_2]PF_6$ (5.0 mM). (c) $X = BARF$ at 50 °C with added *n*-Bu₄NPF₆ (25.0 mM). (d) $X = PF_6$ at 25 °C.

7.35 and 4.46, which are assigned to $NH₂$ and $NCH₂$ hydrogens of the axle component, respectively. The peak positions are at lower magnetic fields than those of uncomplexed dialkylammonium, $[1]BARF$ (δ 6.83 (NH₂) and 4.02 (NCH₂)). These ¹HNMR results indicate that DB24C8 is complexed with the ammonium group of the axle component by the N-H-O hydrogen bonds between oxygens of DB24C8 and NH2 group.¹⁸ Rotaxane-like complex with PF_6^- counter anion, $[2(DB24C8)]PF_6$, was obtained by a similar reaction for 12 h in 45% as a mixture with uncomplexed DB24C8. The molar ratio of $[2(\text{DB}24\text{C}8)]PF_6$ to DB24C8 did not change in CDCl₃ at room temperature for 17 days.

Heating a C_6D_6 solution of [2(DB24C8)]BARF at 50 °C did not change its NMR spectrum for 4 days (Figure 1a, Table 1 (Run 1)). Addition of $[NH_2(CH_2Ph)_2]PF_6$ to the solution (5.0 mM) at $50 \degree$ C caused degradation of the rotaxane-like complex to form a mixture of $[NH_2(CH_2Ph)_2]^+$, DB24C8, 2^+ , $[{NH_2(CH_2Ph)_2}(DB24C8)]^+$, and $[2(DB24C8)]^+$, as revealed by ¹H NMR and ESI-MS spectrometry (Figure 1b, Run 2). The ¹H NMR spectrum of the C_6D_6 solution after 47 h exhibits peaks at δ 5.88 (H_{a'}), 5.11 (H_{b'}), 2.06 (H_c') assigned to the signals of 2^+ as well as the corresponding signals of $[2(\text{DB}24\text{C}8)]^+$ (δ 5.93 (H_a) , 5.10 (H_b) , 2.16 (H_c)) (Figure 2). The positions of the signal H_a , H_b , and H_c in Figure 2b were shifted from the spectrum obtained after 17 min (δ 5.92 (H_a), 5.08 (H_b), 2.17 (H_c)) (Figure 2a). The observed initial rate of the disaggregation, R_{init} , was determined to be 1.9×10^{-2} mmol min⁻¹. Addition of $n-\text{Bu}_4\text{NPF}_6$ to $[2(\text{DB}24\text{C}8)]\text{BARF}$ ([$n-\text{Bu}_4\text{NPF}_6$] $_0 = 25.0 \text{ mM}$, $[[2(DB24C8)]BARF]_0 = 5.0$ mM) at 50 °C converted 43% of [2(DB24C8)]BARF to a mixture with DB24C8 and [2]BARF after 10.5 h ($R_{init} = 7.6 \times 10^{-2}$ mmol min⁻¹) (Figure 1c, Run 3). Disaggregation of [2(DB24C8)]PF₆ in C₆D₆ occurs smoothly without the additives $(R_{init} = 2.1 \times 10^{-1} \text{ mmol min}^{-1})$ without the additives $(R_{init} = 2.1 \times 10^{-1} \text{ mmol min}^{-1})$ (Figure 1d, Run 7) and attains an equilibrium after 8 h at 25 °C ($[[2(DB24C8)]PF_6]/[[2]PF_6] = 14:86$). Thus, the presence of PF_6^- in the solution induces the disaggregation of the pseudorotaxanes. The disaggregation reactions of $[2(DB24C8)]X$ were enhanced also by addition of Et₃N (Runs 4 and 8) or in polar solvent such as CD_3CN and DMSO- d_6 (Runs 5, 6, 9, and 11). Addition of HCl to the $CD₃CN$ solution of $[2(DB24C8)]PF_6$ affects the dethreading reaction to a limited extent (Run 10).

Table 1. Disaggregation reaction of $[2(\text{DB}24\text{C}8)]X (X = \text{BARF}$ and PF_6 ^a

[2(DB24C8)]X $X = BARF, PF6$	R_{init} solvent		
Me O H _{b'} Me		\bigcirc M ² M ₂ C ₀ \sim M ₂ M ₀ + DB24C8 $H_{a'}H_{c'}$ [2]X (X = BARF, PF ₆)	

 a [[2(DB24C8)]X]₀ = 5.0 mM at 25 °C. ^b100{([[2(DB24C8)]X]₀ – $[[2(DB24C8)]X]_{\infty}$ / $[[2(DB24C8)]X]_{0}$. ^cAt 50 °C. ^dDisaggregation was not observed for 4 days. $\text{E}[\text{NH}_2(\text{CH}_2\text{Ph})_2]\text{PF}_6]_0 = 5.0 \text{ mM}$ (partially undissolved). $f[n-Bu_4NPF_6]_0 = 25.0 \text{ mM}$ (partially undissolved). ^g[Et₃N]₀ = 10.0 mM. ^hThe reaction was finished within 8 min. $\left[2(DB24C8)\right]PF_6$ used as a mixture with DB24C8 $([2(DB24C8)]PF_6:DB24C8 = 38/62)$. ^j[HCl]₀ = 10.0 mM.

Figure 2. ¹HNMR spectra of [2(DB24C8)]BARF with addition of $[NH_2(CH_2Ph)_2]PF_6$ ([[2(DB24C8)]BARF]₀ = 5.0 mM, [[NH₂(CH₂Ph)₂]- PF_6]₀ = 5.0 mM, in C₆D₆, 25 °C). a) 17 min, b) 47 h after addition. See Scheme 3 and Table 1 for the assignment of the signals.

The above results indicate that the disaggregation of $[2(DB24C8)]$ involves activation of the N-H \cdot O hydrogen bonds. Chart 1 depicts plausible intermediates of the reaction. Formation of an ion-pair of the ammonium and PF_6^- counter anion in intermediate A assists the activation of the N-H \cdot ^OO hydrogen bonds even in nonpolar C_6D_6 .^{19,20} Polar P-F bonds form a stable hydrogen bond with the ammonium group. The reaction of $[2(DB24C8)]BARF$ with *n*-Bu₄NPF₆ or $[NH_2(CH_2Ph)_2]PF_6$ causes partial counter ion exchange forming $[2(DB24C8)]PF_6$ and its facile disaggregation. Activation of N-H-O hydrogen bonds by interaction of the ammonium group with solvent molecules forms intermediate B and contributes to the disaggregation reaction. Intermediate B is favorable in the polar solvents such as DMSO- d_6 and CD₃CN. The similar N-H. PF₆ and N-H. L (L = solvent) interactions also affect the thermal stability of [2]X and [2(DB24C8)]X in solution which

Chart 1. Plausible intermediates for the disaggregation.

controls the equilibrium position to reach in disaggregation reactions.^{21,22} The N-H^{...}O hydrogen bonds were activated also with $Et₃N$ via neutralization of the ammonium group to form the corresponding amine. $9-11$

In summary, we succeeded in synthesis of a rotaxane-like complex [2(DB24C8)]BARF whose interlocked structure is stable in C_6D_6 . The counter ion exchange of BARF with PF_6 induces disaggregation of the rotaxane-like complex to form a mixture of the uncomplexed component molecules. Effect of the added anion to the reaction rate is more significant than that expected from difference in thermodynamic stability of analogous [2]pseudorotaxane depending on the counter anion. The PF_6^- activates the N-H \cdot O hydrogen bond between the component molecules, similarly to Et_3N and polar solvents. This approach using the controlled release of component molecule from a supramolecular system may provide a new means to design artificial transportation of molecules.

We thank our colleagues in the Center for Advanced Materials Analysis, Technical Department, Tokyo Institute of Technology for elemental analysis and for ESI-MS measurement. This work was supported by a Grant-in-Aid for Scientific Research for Young Scientists from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 21750058) and by Global COE Program "Education and Research Center for Emergence of New Molecular Chemistry."

References and Notes

- a) Catenanes, Rotaxanes, and Knots, ed. by G. Schill, Academic Press, New York, 1971, Vol. 22. b) Molecular Catenanes, Rotaxanes and Knots, ed. by J.-P. Sauvage, C. Dietrich-Buchecker, Wiley-VCH, Weinheim, 1999.
- 2 a) P. L. Anelli, P. R. Ashton, N. Spencer, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, [Angew. Chem., Int. Ed. Eng](http://dx.doi.org/10.1002/anie.199110361)l. 1991, 30, [1036.](http://dx.doi.org/10.1002/anie.199110361) b) P. R. Ashton, D. Philp, N. Spencer, J. F. Stoddart, [J. Chem.](http://dx.doi.org/10.1039/c39910001677) [Soc., Chem. Commun.](http://dx.doi.org/10.1039/c39910001677) 1991, 1677.
- 3 a) D. B. Amabilino, J. F. Stoddart, [Chem. Rev.](http://dx.doi.org/10.1021/cr00040a005) 1995, 95, 2725. b) A. Harada, [Coord. Chem. Rev.](http://dx.doi.org/10.1016/0010-8545(95)01157-9) 1996, 148, 115. c) R. Jäger, F. Vögtle, [Angew. Chem., Int. Ed. Eng](http://dx.doi.org/10.1002/anie.199709301)l. 1997, 36, 930. d) S. A. Nepogodiev, J. F. Stoddart, [Chem. Rev.](http://dx.doi.org/10.1021/cr970049w) 1998, 98, 1959. e) T. J. Hubin, D. H. Busch, [Coord. Chem. Rev.](http://dx.doi.org/10.1016/S0010-8545(99)00242-8) 2000, 200-202, 5. f) T. Takata, N. Kihara, Rev. Heteroat. Chem. 2000, 22, 197.
- 4 Y. Suzaki, T. Taira, K. Osakada, M. Horie, Dal[ton Trans.](http://dx.doi.org/10.1039/b804125c) 2008, [4823.](http://dx.doi.org/10.1039/b804125c)
- 5 a) Y. Suzaki, K. Osakada, [Chem. Lett.](http://dx.doi.org/10.1246/cl.2006.374) 2006, 35, 374. b) Y. Suzaki, K. Osakada, Dal[ton Trans.](http://dx.doi.org/10.1039/b702785k) 2007, 2376.
- 6 a) Y. Tachibana, N. Kihara, Y. Furusho, T. Takata, [Org. Lett.](http://dx.doi.org/10.1021/ol048135n) 2004,

6[, 4507.](http://dx.doi.org/10.1021/ol048135n) b) P. R. Ashton, M. Bělohradský, D. Philp, J. F. Stoddart, [J. Chem. Soc., Chem. Commun.](http://dx.doi.org/10.1039/c39930001269) 1993, 1269. c) D. H. Macartney, [J. Chem. Soc., Perk](http://dx.doi.org/10.1039/p29960002775)in Trans. 2 1996, 2775. d) M. Händel, M. Plevoets, S. Gestermann, F. Vögtle, [Angew. Chem., Int. Ed. Eng](http://dx.doi.org/10.1002/anie.199711991)l. 1997, 36[, 1199](http://dx.doi.org/10.1002/anie.199711991). e) Y. Sohgawa, H. Fujimori, J. Shoji, Y. Furusho, N. Kihara, T. Takata, [Chem. Lett.](http://dx.doi.org/10.1246/cl.2001.774) 2001, 774. f) T. Oshikiri, Y. Takashima, H. Yamaguchi, A. Harada, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja053532u) 2005, 127, [12186](http://dx.doi.org/10.1021/ja053532u).

- 7 P. R. Ashton, I. Baxter, M. C. T. Fyfe, F. M. Raymo, N. Spencer, J. F. Stoddart, A. J. P. White, D. J. Williams, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja9731276) 1998, 120[, 2297](http://dx.doi.org/10.1021/ja9731276).
- 8 S.-H. Chiu, S. J. Rowan, S. J. Cantrill, P. T. Glink, R. L. Garrell, J. F. Stoddart, [Org. Lett.](http://dx.doi.org/10.1021/ol006525d) 2000, 2, 3631.
- 9 Y. Suzaki, E. Chihara, A. Takagi, K. Osakada, *Dalton Trans*. 2009, [9881.](http://dx.doi.org/10.1039/b907417a)
- 10 a) N. Yui, Supramolecular Design for Biological Applications, CRC Press, Boca Raton, FL, 2002. b) N. Yui, T. Ooya, J. Artif[. Organs](http://dx.doi.org/10.1007/s10047-004-0253-0) [2004](http://dx.doi.org/10.1007/s10047-004-0253-0), 7, 62.
- 11 a) T. D. Nguyen, K. C.-F. Leung, M. Liong, C. D. Pentecost, J. F. Stoddart, J. I. Zink, [Org. Lett.](http://dx.doi.org/10.1021/ol0612509) 2006, 8, 3363. b) B. Gorodetsky, N. R. Branda, [Tetrahedron Lett.](http://dx.doi.org/10.1016/j.tetlet.2005.07.093) 2005, 46, 6761.
- 12 ΔG° for formation of [1(DB24C8)]BARF and [1(DB24C8)]PF₆ in CD₃CN are estimated as 9.5 and $5.2 \text{ kJ} \text{ mol}^{-1}$, respectively.
- 13 T. M. Trnka, R. H. Grubbs, [Acc. Chem. Res.](http://dx.doi.org/10.1021/ar000114f) 2001, 34, 18.
- 14 X.-Z. Zhu, C.-F. Chen, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja0546020) 2005, 127, 13158.
- 15 [1]BARF (120 mg, 0.10 mmol) was dissolved in CH_2Cl_2 (2.0 cm³) containing DB24C8 (45 mg, 0.10 mmol) followed by addition of $CH₂=CHCOOi-Pr$ (53 mg, 0.40 mmol) and Ru catalyst (10 mg, 1.0×10^{-2} mmol). The mixture was refluxed for 13 h and solvent was removed by evaporation to form brown oil. Washing the crude product with hexane followed by purification by preparative HPLC (CHCl3) gives [2(DB24C8)]BARF (90 mg, 0.050 mmol, 50%).
- 16 Data of $[2(\text{DB}24\text{C}8)]\text{BARF.}$ ¹H NMR (300 MHz, CDCl₃, rt): δ 1.26 (d, 12H, CH₃, $J = 7$ Hz), 2.65 (dt, 4H, OCH₂CH₂, $J = 6$, 6 Hz), 3.32 (s, 8H, CH2-DB24C8), 3.69 (m, 8H, CH2-DB24C8), 3.97 (t, 4H, CH₂-Axle, $J = 7$ Hz), 4.09 (m, 8H, CH₂-Axle), 4.46 (4H, NCH₂), 5.07 (sept, 2H, CH(CH₃)₂, $J = 7$ Hz), 5.93 (dt, 2H, CH₂CH=CH, $J = 16, 2$ Hz), 6.70 (d, 4H, C₆H₄-Axle, $J = 9$ Hz), 6.79 (m, 4H, C_6H_4 -DB24C8), 6.91 (m, 4H, C_6H_4 -DB24C8), 7.00 (dt, 2H, CH₂CH=CH, $J = 16$, 7 Hz), 7.12 (d, 4H, C₆H₄-Axle, $J = 9$ Hz), 7.35 (brs, 2H, NH2), 7.52 (s, 4H, p-C6H3(CF3)2), 7.70 (m, 8H, o- $C_6H_3(CF_3)_2$). ¹³C NMR (100 MHz, CDCl₃, rt): δ 21.8 (CH₃), 31.8 $(OCH₂CH₂), 52.1 (NCH₂), 65.9 (OCH₂-Axle), 67.8 (OCH(CH₃)₂),$ 68.2 (CH2-DB24C8), 70.2 (CH2-DB24C8), 70.6 (CH2-DB24C8), 112.8 (C₆H₄-DB24C8), 114.4 (C₆H₄-Axle), 117.4 (p-C₆H₃(CF₃)₂), 121.9 (C₆H₄-DB24C8), 123.8, 124.0 (CH₂CH=CH), 124.5 (q, CF₃, $J(CF) = 271$ Hz), 128.8 (q, CCF_3 , $J(CF) = 31$ Hz), 130.5 (C₆H₄-Axle), 134.7 (o - $C_6H_3(CF_3)_2$), 143.8 (CH₂CH=CH), 147.3, 159.2, 161.6 (q, BC, J(BC) = 50 Hz), 165.7 (C=O). Anal. Calcd for C86H84BF24NO14: C, 56.68; H, 4.65; N, 0.77%. Found: C, 56.28; H, 4.54; N, 0.88%. ESI-MS (MeCN) m/z ; [2(DB24C8)]⁺ calcd for $C_{54}H_{72}NO_{14}$, 958; found, 958.
- 17 ESI-MS spectrum also contains peaks $(m/z = 247, 471)$ assigned to 2^+ and $\text{[Na}(\text{DB}24\text{C}8)\text{]}^+$ due to disaggregation of $\text{[2}(\text{DB}24\text{C}8)\text{]}^+$ during the measurement.
- 18 P. R. Ashton, P. J. Campbell, P. T. Glink, D. Philp, N. Spencer, J. F. Stoddart, E. J. T. Chrystal, S. Menzer, D. J. Williams, P. A. Tasker, [Angew. Chem., Int. Ed. Eng](http://dx.doi.org/10.1002/anie.199518651)l. 1995, 34, 1865.
- 19 N-H-F interactions were observed in a cyclic dibenzylammonium hexafluorophosphate derivative in the solid state: S.-H. Chiu, A. R. Pease, J. F. Stoddart, A. J. P. White, D. J. Williams, [Angew. Chem.,](http://dx.doi.org/10.1002/1521-3773(20020118)41:2<270::AID-ANIE270>3.0.CO;2-5) [Int. Ed.](http://dx.doi.org/10.1002/1521-3773(20020118)41:2<270::AID-ANIE270>3.0.CO;2-5) 2002, 41, 270.
- 20 Ion pairing dibenzylammonium salts and pseudorotaxane formation with DB24C8: J. W. Jones, H. W. Gibson, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja034442x) 2003, 125[, 7001](http://dx.doi.org/10.1021/ja034442x).
- 21 Dissolution of DB24C8 and $[2]PF_6$ in CDCl₃ at 25 °C causes partial formation of $[2(DB24C8)]PF_6$. See Supporting Information.
- 22 Recent example of couterion controlled rotaxane based molecular shuttle: T.-C. Lin, C.-C. Lai, S.-H. Chiu, [Org. Lett.](http://dx.doi.org/10.1021/ol802638k) 2009, 11, 613.
- 23 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.